图例:

2018年批准项目

2019年批准项目

2020年批准项目

2021年批准项目

2022年批准项目

科研成果
论文
专著
专利
获奖
论文
首页
>论文
Millennial-scale precipitation variability in the Indo-Pacific region over the last 40 kyr
4万年以来印度洋-太平洋交汇区降水时空演化

印度洋-太平洋暖池是全球海温最高的海域,被称作为全球热引擎(heat engine,在气候系统中扮演着重要的角色。但是实际观测记录普遍较短,限制了对全球变暖背景下该地区气候演化的理解。因此,急需在印太交汇区古气候研究中揭示自然气候因子变化的历史和规律,以此来弥补器测记录的不足、为模型预测提供边界条件,并为人类如何应对当下全球变暖提供参考。

目前,该地区降水重建的替代记录多基于氢氧同位素或X射线荧光扫描的元素比率,但是这两种方法都有一些局限。因此,开发独立的代用指标并重建独立的降水演化历史,并多指标交叉验证,可更好的揭示热带降水对区域海洋-大气过程的响应。基于这一思路,研究人员利用暖池核心区的深海沉积岩芯,分析了黏土矿物和主微量元素等指标,重建了跨越过去40000年的连续风化记录,时间分辨率首次达到80年。大陆风化记录主要受到降水和温度变化的影响,而4万年以来印太交汇区温度变化未出现明显的千年时间尺度波动,因此,研究人员认为重建的风化记录中千年时间尺度的波动主要受到局部降水强度变化的控制。而该区域降水强度的变化则与印太暖池的大气深对流的强度演化直接相关。该结果也显示:4万年以来印太暖池的大气深对流演化与类ENSO系统和太平洋沃克环流强度变化非常一致。

在此基础上,研究人员进一步总结了该地区多种指标重建的降水记录,并分析发现:在千年时间尺度上,印太交汇区西侧(东印度洋)主要受热带辐合带迁移(ITCZ)影响,降水呈反向分布,而东侧(西太平洋)降水则呈三明治结构分布,主要受到类ENSO系统的控制。以上古记录研究结果也在北大西洋融水单因子驱动的TraCE-21模型中得到很好的重现,表明北大西洋融水驱动可能是印太交汇区千年时间尺度差异性降水分布的诱因。本研究揭示了4万年以来印太交汇区降水时空分布特征,首次发现其东西两侧降水的差异性分布特征,区分了ITCZENSO系统在该地区的不同影响。该结果可为印太交汇区高分辨率的降水和暖池大气深对流模型提供边界框架和结果验证。